
AS CHSET2
-~~C~~5 EAR~R~O~~SITL~E 11O b

SCOMPUERSENCE*- .TC iNOEOG t

A -

- - 45 TCHNFOR~ SQET CE APIC bAONSETO3

TO LEANIN AND GEMER

I~ ~ ~~~~Bni Berger_____________

MIT/LCS/TR-444

EFFICIENT NC ALGORITHMS
FOR SET COVER APPLICATIONS
TU, LEARNING AND GEOMETRY

Bonnie Berger
John Rompel

Peter Shor

May 1989

-n.;

NOV0 3 19

Approvvd Irx publeic ~oam
Divtbution nI i

10 31 214

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-444 N00014-80-C-0622

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy

Science I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
Efficient NC Algorithms fer Set Cover with Applications to Learning and Geometry

12. PERSONAL AUTHOR(S)
Berger, B. and Rompel, J.

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PA? COUNT
Technical FROM TO 1989 May

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Set cover, computational geometry, learning theory,

parallel algorithms, NC

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
_. In this paper we give NC approximation algorithms for the unweighted and weighted set

cover problems. Our algorithms use a linear number of processors and give a cover that

has at most log n times the optimal size/weight, thus matching the performance of the best
sequential algorithms (H, Lo, C). We apply our set cover algorithm to learning thoery,
giving an NC algorithm to learn the concept class obtained by taking the closure under
finite union or finite intersection of any concept class of finite VC-dimension which has

an NC hypothesis finder. In addition, we give a linear-processor NC algorithm for a
variant of the set cover problem first proposed by (CF), and use it to obtain NC algorithms
for several problems in computational geometry.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
EJ UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPON.SBLE IND:V;DUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Judy Little, Publications Coordinator (617) 253-5894

DO FORM 1473, R4 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*LU& Gwt mv ,,,i Of Mw: 194S-8W4W

Unclassified

Efficient NC Algorithms for Set Cover with Applications to
Learning and Geometry

Bonnie Berger*
John Rompelt

Laboratory for Computer Science
M Ntssachusetts Institute of Technoiogy

Cambridge, MA 02139

Peter W. Shor

AT&T Bell Laboratories
600 Mountain Avenue
Murray lill, NJ 07974

Abstract

In this paper we give NC approximation algorithms for the unweighted and weighted
set cover problems. Our algorithms use a linear number of processors and give a cover
that has at most log n times the optimal size/weight, thus matching the performance of
the best sequential algorithms [J, Lo, C]. We apply our set cover algorithm to learning
theory, giving an NC algorithm to learn the concept class obtained by taking the closure
under finite union or finite intersection of any concept class of finite VC-dimension which
has an NC hypothesis finder. In addition, we give a linear-processor NC algorithm for
a variant of the set cover problem first proposed by [CF], and use it to obtain NC
algorithms for several problems in computational geometry.

Keywords: Set cover, computational geometry, learning theory, parallel algorithms,
NC

*,upported in part by Air Force Grant AFOSR-96-00g7
tsupported by a National Science Foun dation Graduatc Fellowship, DAR k'A contract N(t) I 1I-S0-('-f)(2, ,m(I Air

Force A FSOR-86-O078

1 Introduction

Given a hypergraph H = (V, E), the set cover problem consists of finding a minimum size subset
R C V which covers H; i.e., for which e n R 5 0 for all e E E. This is equivalent to the problem
of, given a set system A C 2x , finding a minimum subcollection A' C A such that U A' = X. The
set cover problem is NP-complete [K], so we will not be concerned with algorithms giving exact
solutions; rather, we will consider algorithms giving approximate solutions.

The best known polynomial-time approximation algorithm for set cover is the greedy set cover
algorithm [J, Lo]. Surprisingly, showing that the greedy algorithm performs well is fairly challeng-
ing, as is evident in the proofs of Johnson and Lovasz. They show that the greedy algorithm always
produces a cover of size at most log A times optimal, where A is the maximum degree of H (i.e.
the maximum number of edges containing any node). However, the greedy algorithm is inherently
sequential. Although RNC algorithms have been proposed which perform well for some special
cases [CF, ABLP, VL], no parallel algorithm which performs well on arbitrary instances has been
developed until now.

In this paper, we give a linear-processor deterministic NC algorithm that always finds a cover
which is within a log A factor of the optimal size. Hence, the algorithm achieves the same perfor-
mance as the best sequential algorithm, both in terms of cover size and processor-time product. In
addition, the algorithm works equally well for weighted hypergraphs.

We also consider a related problem, which we call the balanced set cover problem. Specifically,
given a hypergraph H = (V, E) and some fixed c, 0 < c < 1, find a minimum size subset R C V such
that IR n el ciei A for all e E E. We call this a balanced cover since for each edge, the fraction
of its vertices in the cover is at least a constant times the average fraction. Clearly, balanced set
cover differs from normal set cover in that instead of covering every edge once, every edge is covered
multiple times in proportion to its size. Chazelle and Friedman [CF] first considered this problem
and developed a polynomial-time approximation algorithm which produces an R of size O(Ig(,IEI)),
where an is the size of the smallest edge. Their algorithm is a modified version of the greedy set
cover algorithm and is just as sequential in nature. In this paper, we give an NC algorithm for
balanced set cover, which uses a linear number of processors, and obtains the same bound on the
cover size as the sequential [CF] algorithm.

The set cover problems we consider have several applications in parallel learning theory and
computational geometry. Of the two, learning is more interesting, because of all the fields in which
people strive to develop parallel algorithms, learning is probably one of the most natural. In this
paper, we consider a fundamental learning problem that has been solved in the sequential domain
[BEHW], and solve it in parallel. In particular, we consider the problem of learning in concept
classes that are formed by taking either finite unions or finite intersections of a fixed base class of
finite VC dimension. We show that classes of this type are NC-learnable whenever there is an NC
algorithm for finding a consistent hypothesis in the base class. The only previous parallel work
on this subject is in [VL]. They give an RNC algorithm for learning s-fold unions of axis-parallel
rectangles in the plane, by using a randomized set cover algorithm for specialized hypergraphs.
Our general techniques solve this problem as a special case. In addition, while [VL] may produce a
hypothesis with up to s4 log n2 rectangles, our method will always produce one with at most slog m
rectangles, due to the performance guarantee of our set cover algorithm. I

In computational geometry, randomization is frequently used to construct poly-time algorithms
[Cll, C12, C13, EGS, HW, RSl, RS2]. Recently, Chazelle and Friedman [CF] showed how to make
most of the randomized algorithms used in computational geometry deterministic, albeit at the
cost of a substantial increase in running time. To remove randomness, they use balanced set cover.
Our parallel results can be used to put many of these geometry algorithms into deterministic NC, Code

/or
~tst specile]

with the number of processors required being equal to the running time of Chazelle and Friedman's

algorithm.
The remainder of this paper is divided into sections as follows. In Section 2, we present our NC

algorithms for approximate set cover. In Section 3, we show how to use set cover, as well as other
tools, to make tite letrning problem parallel. In Section 4, we outline the technique of Chazelle and
Friedman and describe some of the ideas that are needed to parallelize their algorithms.

We discovred the balanced set cover results in late-February. Shortly thereafter, Motwani,
Naor, and Naor [MNN] announced that they also could obtain an NC algorithm for balanced set
cover. Although we have not seen their proof, they have indicated that their method uses (log n)-
wise independence (instead of pairwise independence - as in our method), and thus it appears to

require many more piocessors for balanced set cover than our method. Our stronger results for
general set cover and the applications to learning were discovered in mid-April, and do not seem
to have been duplicated by Motwani, Naor, and Naor. Nor does it appear that these results can
be naturally derived from their methods.

2 NC Algorithms for Approximate Set Cover

In this section, we consider the set cover problem: given a hypergraph H = (V, E), find a minimum
size subset R C V which covrs H, i.e. for which e n R 0 for all e E E. As previously stated, we
will consider algorithms giving approximate solutions. The best known approximation algorithm,
due to Johnson and Lovasz [J,io], is the greedy set cover algorithm. This works by repeatedly
picking the vertex of maximum degree (i.e. the one contained in the most edges), adding it to the
cover, and then deleting it and all edges containing it from the hypergraph. Surprisingly, showing
that this simple greedy algorithm performs well is fairly challenging, as is evident in the proofs of
the following theorem.

Theorem 2.1 (J,Lo) Let H = (V, E) be a hypergraph with maximum degree A. Define a fractional
cover of H to be a function f : - RZ such that 0 < f(v) < 1 for all v E V and 1v:e f(v) >_ 1
for all e E E. (Note that a normal cover is a fractional one where f(v) E {0, 1} for all v E V.)
Let r be the size of the optimal cover of H, and let r* be the size (i.e. ZvEV f(v)) of the optimal
fractional cover of H. Then the size of the cover produced by the greedy set cover algorithm is at
most (lnA + 1)r* < (lnA + 1)r.

Remark 2.2 The following problems can easily be shown to be equivalent to set cover:

1. Given a hypergraph H = (V, E), find a minimum size subset of the edges which covers V.

2. Given a bipartite graph G = (X, Y, E), find a minimum size subset of X which dominates Y.

An approximation algorithm for any one of these problems can be converted to approximation
algorithms for the others with the same performance guarantee.

We will also consider approximation algorithms for a variation of the set cover problem, which
we call the balanced set cover problem: given a hypergraph H = (1/, E), and some fixed c, 0 < c < 1,

find a minimum size subset R C V such that IRn el clel V for all e E E.
In this section, we will provide efficient parallel approximation algorithms for these problems.

In Section 2 *.1 we give an NC algorithm for approximate balanced set cover, which produces an R
of size O(!Ri-I-), where an is the size of the smallest edge. A sequential algorithm achieving the
same bound was used in [CF] to obtain deterministic algorithms for several geometry problems.

2

Our result allows us to parallelize these problems (see Section 4). In Section 2.2, we give an
NC algorithm for approximate set cover, which achieves the same bound as the greedy algorithm
(within a (1 + E) factor). Our algorithm builds upon the techniques used in our balanced set cover
algorithm. In Section 2.3, we show how to reduce the processor count of both these algorithms to
be linear. Finally, in Section 2.4, we show how to extend our set cover algorithm to handle weighted
hypergraphs [C].

2.1 Balanced Set Cover

Here we consider the balanced set cover problem. Specifically, given a hypergraph H = (V, E) with
minimum edge size cen, we want to find a subset R C 1, IRI _ 8log(nm)/a, such that for all e E E,

le n RI ! clelA for some constant c > 0.
The first way one might consider finding such an R is to simply choose R at random. It can be

easily verified that if each vertex is given an independent 4 log(nm) probability of being included in
an'R, then with high probability R will be good.

Another method for finding a good R is the "modified greedy algorithm" of [CF], which works
as follows. First break up the edges so that every edge contains between an and 2an vertices. Then
modify the greedy set cover algorithm by putting weights on edges. Initially each edge has weight
1. The weight of a vertex is defined as the sum of the weights of the edges which contain it. The
algorithm repeatedly picks the vertex with maximum weight. Instead of removing an edge when it
is covered, its weight is cut in half. Chazelle and Friedman show that running this algorithm for
4 log(nm)/a steps produces a good R.

Suppose we want an NC algorithm to find a good R. The first approach above gives a natural
RNC algorithm, but needing full independence. The second is inherently sequential. We provide a
hybrid of these two algorithms which depends on only pairwise independence, and then use Luby's
method [L2] to get a deterministic NC algorithm. In this case, the hard part is getting an RNC
algorithm that only uses pairwise independence.

Our approach first handles two special cases: if r > n, we let R = V and quit; if a > 1/ log' n
(implying r < 8dlog3 n), we run the "modified greedy algorithm" directly. Otherwise, we alter
the "modified greedy algorithm" as follows: rather than picking one vertex at a time, we pick a
large set of vertices which significantly decrease the total edge weight. This is accomplished by
picking vertices with probability -L, where 6 is a small constant. This implies that for each edge,
the expected number of vertices picked is between 6 and 2b. (Actually, we are ignoring the fact
that the size of edges decreases as they are hit. However, one can ensure that all edges not hit
enough times already contain at least 7an/8 vertices; thus, the numbers here are off by at most a
factor of 8/7.) Because we are picking such a sparse set of vertices, even assuming just pairwise
independence, we can show that the probability of covering a given edge at least once is at least
6 - 262. So we expect to reduce the total edge weight by a 6I26 fraction, at least. After about
4 log m/6 iterations, we expect the total weight to have dropped from m to I/r. In this case, every
edge has weight at most 1/m, and thus has been hit at least logm times. So JRI will be about
12p. , and le n RI will be at least logim, which is at least 8el

-
R

- .

To make this deterministic, we need to be able to construct a set of about 6/a vertices which
cR11ces the total weight to decrease by about 6/2. Since we krow that picking pairwise independently
with probability - is expected to work, we could apply the techniques of [KW,L1 ,ABI], trying every
sample point of a small pairwise independent distribution, to get a deterministic NC algorithm.
Unfortunately, this entails an 0(n 2) blowup in the number of processors. Instead, we will apply
the techniques of [L2], first obtaining a blowup of only 0(an), then, in Section 2.3, showing how
to achieve a linear number of processors.

3

To apply the techniques of [L2], we must reduce the problem to finding an X = < X 1 ,. . .,>

with BENEFIT(X) > E[BENEFIT(X)], for some BENEFIT function which is a sum of terms

depending on one or two random variables each. Our first clt at a BENEFIT function is to try to

lower bound the decrease in total weight. Consider some edge e E E with weight we. A good lower

bound on the weight removed on edge e is i ViE X; i.e., w,/2 if edge e is hit and 0 otherwise.

This is not a good function to work with, since to apply [L2] we must have a function which is a

sum of terms depending on one or two variables each. However, we can further lower bound by the

first two terms of the inclusion-exclusion expansion,

W2(E_ Xi - E XiXj) = BENEFIT,(X).
2 iEe iJEe

It is easily verified from this that E[BENEFITe(X)] > -(6 - 262). So
Wtotal

E[Z- BENEFITe(X)]> (6 - 262).
eEE

2

Hence, we might try to apply U ,,by's technique to get an X such that

1 BENEFIT,(X) > wo((- 262).
eEE

2

Why isn't this enough? Because the X output may be 1 in significantly more than 6/a places.

In this case, after the correct number of iterations, every edge would be hit logm times, but R
would be too large. So, we must modify the BENEFIT function so that this cannot occur. Let

IXI = ZEv X,. We let

BENEFIT(X) = BENEFITe(X) - a5Wtotai (IXI - E[IXI]) 2.
eEE

Note that BENEFIT(X) is still a lower bound on the weight removed by picking X.

We already argued that E['EEE BENEFITe(X)] >_ Wt (6 - 262). And,

E[(E X,- E[Z Xi])2] E[(Z Xi)' - E[Z X,]]
iEV iEV iEV iEV

- S E[Xi]E[Xj] + y: E[X?] - 5 h[Xi]E[Xj] - L E [X,]2

i,jEV iEV i,jEV iEV

- 5(EIIXI - E[X,]2)
iEV

- Iv -- - (-_)2)an an
< 6/a.

So E[BENEFIT(X)] Wtojaj(- 2b2).

Lemma 2.3 BENEFIT(X) 0 = - _ 0 IXl_ + .

Proof: Assume IIX (I- - E[IXl])2 > Se abwt,,,o(IXI - E[IXI]) 2 > Wo

and BENEFIT(X) < 0. 0

4

Plugging into [L2], we get an X with BENEFIT(X) > Wtta(4 - 22). Thus we can pick a set
of size at most E + 1 which causes the total weight to decrease by approximately a 6/2 fraction.
This allows us to get an R with the desired properties.

The running time of this procedure is O(logm) times the O(log3 n) time required for one
invocation of [L2]. The number of processors is O(ZeEE Jej 2 +n 2) = O(cneE_,E jeI+n 2). Assuming
the n 2 term is insignificant, this is an times the size of the input, O(¢eEE fel). In Section 2.3, we
show how to achieve a linear number of processors for this problem.

2.2 Set Cover within log A of Optimal

Now we turn our attention to the problem of, given a hypergraph H = (V, E), finding a cover of
H containing O(r* log A) vertices, where A is the maximum degree of H and T is the size of the
optimal fractional cover of H.

In the previous section, since a random cover worked with high probability, to get an RNC
algorithm using only pairwise independence, we could simply pick a sequence of random sparse
subsets and use the metric from the greedy algorithm to ensure each one contributed to a good
cover. Here, however, since a random cover is not likely to be good, the behavior of our algorithm
must more closely follow the behavior of the greedy algorithm.

To find a near-optimal cover, we proceed as follows. Let E be a constant, 0 < c < 1/12. We can
cover H in a series of phases. At the beginning of phase i (phases will be sequenced in decreasing
order), the hypergraph induced by the algorithm thus far will have maximum degree less than
(1 + e)'. During this phase, we will restrict our attention to the subhypergraph induced by the
vertices of degree between (1 + e)' - 1 and (1 + c)' and will only add these vertices to the cover.
In this way we only add to the cover vertices that have degrees close to the maximum, thereby
emulating the greedy algorithm.

In the previous section, since the edges were guaranteed to range in size between an and 2an
vertices, we were able to pick vertices pairwise independently with probability -, to get a good set.
Here, however, the edge sizes can vary arbitrarily, making the task of getting a single probability
impossible. If we set ;t too low. then t small edges will not be hit quickly enough. If we set it too
high, then the large edges will be hit many times; this is undesirable since the average number of
edges covered by each vertex could become much smaller than the maximum degree, thus deviating
from the behavior of the greedy algorithm. Our solution is to perform a sequence of subphases.
At the beginning of subphase j (again sequenced in decreasing order), all edges will contain fewer
than (1 + c)j vertices (which were restricted above to have degrees between (1 + C)'- 1 and (1 + C)i).

During this subphase, we will repeatedly pick vertices with probability FJ-f , where 0 < b < 1/12.
Picking vertices with this probability will allow us to cover a 6/2 fraction of the edges of size at
least (1 + c)j-', but will not cause many edges to be hit more than once, since no edge is larger
than (1 + c)j.

More precisely, a subphase consists of a series of selection steps, performed until there are
no more edges of size at least (1 +)1-'. The selection steps are of two types. If one or more
vertices cover a 63/(1 + C) fraction of these large edges, we select one such vertex. Otherwise, we
run a selection procedure which produces a collection P of vertices which cover at least IPI(1 +
E)i-l(1 - 66 - 2cb) edges, including at least a b/2 fraction of the large edges. (Later we will give
both randomized and deterministic methods for performing this selection step.) In either case,
the selected vertex or vertices are added to the cover and deleted, the edges covered by these are
deleted, and vertices which now have degree less than (1 + c)i-1 are removed froin consideration
for this phase.

Theorem 2.4 The number of selection steps is O(log 2 nlog m).

Proof: Clearly the number of subphases is O(log n log m/ log2 (l + C)) = O(log , log M). Within
each subphase, each selection step removes at least a 63/(i + C) fraction of P.. Thus, there are

O(logn) selection steps within each subphase. 0

Theorem 2.5 The number of vertices in the cover produced by the above algorithms is at most

)2(logA)r*, where A is the maximum degree of any vertex, and 7" is the size of the minimum

fractional cover.

Proof Sketch: Consider a selection step which adds k vertices to the cover. These vertices will

cover a combined total of at least kd'- 6, -5 edges, where d is the current maximum degree of any

vertex. This is at worst a 1-66-2d6 factor lower than what the greedy algorithm could attain. So,

intuitively, one would expect to do no more than a factor 1-9L2. worse than the greedy algorithm.
In fact, the proof of Lovasz [Lo] can be modified to give the theorem. The details will appear in a
later version of this paper. 0

Now we give randomized and deterministic versions of the selection procedure. Let Hi = (V, E,)
be the current hypergraph, restricted to vertices of degree between (1 + F)- and (1 + c)'. Also, let
Eij C Ei contain the edges of Ei which have at least (1 + C)J-1 vertices. Furthermore, we are given
that no vertex in Vi covers more than a 63/(l + C) fraction of Ej. Then we want to return a P C Vi

such that P covers at least IP[(1 +)- 1 (1 - 66 - 246) edges, including at least a b/2 fraction of
Eij. The randomized algorithm generates P by including each vertex of V, with probability (

pairwise independently. If P is good, we return it, otherwise we try again.

Theorem 2.6 With probability at least 1/8, a random P is good.

Proof: To show P covers close to IPI(1 + c)i edges, we will show that P covers many edges and
that P is not too large. In terms of our random variables, JP = ZkEV, Xk, which we will denote

262

by fj(X). We will want fl(X) (-262 LVj; i.e., fi(X) - E[fl(X)] _< 2 jVi. To show this is
likely, we will apply Chebyshev's inequality, so let us note that the variance of fi(X) is at most

IV il .Moreovei, let us observe that JVij > 6- since no vertex in Vi covers a TTT fraction of

Eii. Therefore we know that with probability at least 3/4,

(fi(X) - E[fi(X)])2 < 4Var(f1 (0Y)) < 41Vj (< 41Vj 2
(+ 4j) j (1 + E)2j'

which implies

Ifi(X)- E[f(X)]l <_ 2jV 62

(1 + C)"

A lower bound on the number of edges covered by P is

E (E Xk - E XkX,) = : d(v)Xk - XkX,.
eEE, kEe klEe ,E V, eEE, kJEe

The first term is bounded below by IPI(l+) i- 1, which is at least 6 2 1V, if(f 1 (X)-E[f1 (X)])2 <

4Var(fi(X)) as before. Denote the second term by f 2 (X). The expectation of f2 is at most
(1 +)ViI. Thus with probability 3/4,

f2 (X) _< 4E[f 2(X)j !5 (1 + +

6

Thus with pro, bility 1/2, b(th events hold, so [P < 2 -- I" l' and at least
(1)'VI 6 (14-& ~(+)-6-46 2 -26 2E

(1 + c)-I 1 (1 + (1 - 6 - 262

> PI(1 + c)'-'(1 - 66 - 26c)

edges are covered.
Now we consider the edges in Eij. Similar to before, we can lower bound the number of heavy

edges covered by P with

9j (E Xk - XkX) ZZ - Z Z XIxi.
eEE, kEe klEe eEE., kEe eEE,, kLEe

We will use f 3 (X) to denote the first term and f 4 (X) to denote the second. Also, similar to before.
we will show that, with high probability, f 3 (X) is large and f 4 (X) small. To bound f 3 (X), we will

use Chebyshev's inequality. To compute Var(f 3 (X)), we rewrite f 3(X) as EkZv, dkXk, where dk is
the degree of vertex k ii sub] ypergraph Hi. (1', Eij). Thus,

Var(f 3 (X)) = y' d2Var(Xk) < 6 2
kr-V(+ E) v kEv,

Since no vertex covers a fraction of Eij, dk <_ 63 Eijj for all k E V. Thus,

Var(f3(X)) < 6 b)3JE 1j d

-(+ C) kEV,

64 IEol1 ± E)
-< (l+e)

= 6 4
1Eij 12 .

Also, E[f 3 (X)] > lEji 6 . Therefore, with probability 7/8,

(f1 (X) - E[f1 (X)) 2 < 8Var(f 3(X)) _< 86b1Eij 2

which implies f3(X) > IEI(+ - v/ 62). The expected value of f4 (X) is at most EijjL. So with
probability 3/4,

f 4(X) < 4E[f 4(X)] < IEI262.

With probability 5/8 both conditions hold, and thus the number of edges of Eij covered is at least

lEi1l(6 - V862 - 262) > IEA6(l -I -56) > lEio.

With probability at least 1/8, all four conditions hold simultaneously, and P is good. 0

Theorem 2.7 There is an NC algorithm for the selection procedure.

Proof: Observe that in the proof above we actually showed that the following four conditions
impl, that P is good.

(f(X)- E[f1 (.X)])2 < 4Var(f 1 (X)),

f 2 (X) :S 4E[f2 (X)],

(f 3 (X) - E[f 3 (X)]) 2 < 8Var(f3(X)), and

f(X) S 4E[f 4(X)].

7

To make our selection procedure deterministic, we will capture these four conditions in a BENEFIT
function, and then apply Luby's method. Let

BENEFIT(X) = 1 - (f 1(X) - E[f 1(X)])2 (f 2 (X) (f 3 (X) - E[f 3 (X)]) 2 (f 4 (X)
4Var(f, (X)) 4E[f 2(X)] 8Var(f 3 (X)) 4E[f 4 (X)]

Clearly, E[BENEFIT(X)] = 1/8. It is also clear that if BENEFIT(X) 0, then the four conditions
above are satisfied. Therefore we can apply [L2] to get a good P. 0

The number of processors for our deterministic selection procedure will be O(ZeEE, e 2+ IV12),

which is at most n times the input size of O(1eEE Iel + n). In thp next section, we show how to
obtain the same result using only a linear number of processors.

2.3 Achieving a Linear Number of Processors

In Sections 2.1 and 2.2, we presented RNC algorithms for set cover, which depend on only pairwise
independence. These algorithms used only a linear number of processors. However, applying Luby's
method to determinize these algorithms caused an increase in the number of processors, since we
require one processor for each term of the BENEFIT function, expanded as a sum of functions
depending on one or two variables each. The reason the BENEFIT functions have too many terms
is that they include sums of all pairs of a subset of the random variables. To achieve a linear number
of processors, we modify Luby's technique: instead of computing conditional expectations on the
terms of the expanded BENEFIT function, we compute conditional expectations on terms of the
form Z iEs XiXj directly. (Note that we can rewrite terms of the form (,es Xi - E[jiEs Xd]) 2

as twice the sum of all pairs of S plus O(ISI) other one-variable terms.) This is similar to the
technique used by Luby to achieve a linear processor MIS algorithm [L2,L31.

We will demonstrate how to compute the conditional expectations in the simple case where the
Xi's are unbiased. This easily generalizes to the case where the Xi's are identically distributed but
biased. To understand this, we must review Luby's method. To find an X with BENEFIT(X)
E[BENEFIT(X)], Luby lets Xi = E ijwj +w+ mod 2, where i1 i 2 ... il is the binary expansion
of i. He then sets one bit of L at a time in such a way as to maximize the conditional expectation
of BENEFIT(X).

We provide a way to compute

E[Xix IXI=i, 2 = 2,..,wt=St]
i,jES

If t = 1+ 1, then we know all the Xi's, and EiJES X = (,'sX). Otherwise, we partition S into

sets S" = {i E S I it+, ". i = a). We further partition S,, into S,,o = {i = Sc, j ,, _ ijwj mod 2 =

0} and S., = Sc, - S.,o. Note that given w, = sj,..... ,=st,

1. Pr[Xi = 0] = Pr[Xi = 1] = 1/2,

2. ifi E S,,, and if E S,,j,, then Xi = X, iffj = j', and

3. if i E S, and i' E S,,, where a ,i a', then Pr[Xi = Xj,] = Pr[Xi :$ X,,] = 1/2.

Therefore, conditioned on wL = si,... ,w =s,

E[Z Xj] = E[xx, + Zx]
i,jES a ,jESa c,,' iES. jES ,

8 1 m m ~ m mll mmmmmRl l lu m

= EL XjX3 + E Xjj + XXj + Z. .fIS ,i
01 i,jES,,o i,jES, I iESao jr.,, a'4

Ic (1 (oSI + 1oS1ii Ii] + 1 Sa1 IS&i

1 1

= 1 [(Sa, 0) + + 1S

Since there are at most ISI non-empty S.'s, we can compute this using O(ISI) processors.

2.4 Weighted Set Cover

In this section, we consider the problem of weighted set cover: given a hypergraph H = (V, E) and
a weigh' function w : V -- 1?. and letting w(S) := Et,V;w(v), find a subset R C V which covers H
such that w(R) is smal]. Not, that if w(v) = 1 for all v E V, this becomes normal set cover. Let
r* be the minimum weight of any fractional cover of H. Then,

Theorem 2.8 (C) There is a polynomial time algorithm which outputs a cover R of H with
w(R) < r* log A, where A is the maximum degree of H.

Chvatal's algorithm for weighted set cover is simply the greedy set cover algorithm of Johnson and
Lovasz modified to always pick the vertex with minimum cost per edge covered, i.e. minimum '(V)

We can combine this technique with our algorithm of Section 2.2 to get

Theorem 2.9 If maxVEv w(v) <_ 2 1'gO I minvEv w(v), then there is an NC algorithm, using a linear
number of processors, which outputs a cover R of H with w(R) - r logA.

Proof Sketch: Modify the algorithm of Section 2.2 so that a phase considers only those vertices
with ! within (1 + c) of the minimum lue still left. The restriction of the weight function
ensures that there will be only poly-log many phases. The structure of the subphases is as before.
A slightly more complicated BENEFIT function is required, since the vertices can have widely
varying degrees, but it is of the same basic form. The proof of Chvatal can be modified to show
that this algorithm performs near-optimally as stated. 0

3 Application to Learning Theory

In this section, we apply the set cover algorithm of Section 2.2 to parallel learning, a field first
explored by Vitter and Lin [VL]. In particular, we provide an NC algorithm for learning in concept
classes that are formed by taking either finite unions or finite intersections of a fixed base class
of finite VC dimension. For example, convex polygons are defined by finite intersections of half-
planes. We show that classes of this type are NC-learnable whenever there is an NC algorithm
for finding a consistept hypothesis in the base class (Theorem 3.8). In obtaining this result, we
employ our parallel set cover algorithm to obtain a sufficiently simple explanation of the sample
data. Blumer, Ehrenfeucht, Haussler, and Warmuth (BEHW] had previously solved this problem
in a polynomial-time model.

The only previous parallel work on this subject is in [VL]. They give an RNC algorithm for
learning s-fold unions of axis-parallel rectangles in the plane, by using a randomized set cover
algorithm which is heavily tied to their specific problem. Our general techniques apply directly to
this problem. In addition, while [VL] may produce a hypothesis with up to s4 log m rectangles, our

9

method will always produce one with at most slog m rectangles, due to the performance guarantee
of our set cover algorithm.

The following definitions are adapted from [BEHW, VL]:

Definition 3.1 Fix a domain X. A concept class is a nonempty set C C 2X of concepts. In this
paper, it is assumed that X is a fixed set, either finite, countably infinite, [0, 1]n, or En for some
n>1.

Definition 3.2 Given a nonempty concept class C C 2X and a set of points S g X, flc(S)
denotes the set of all subsets of S that can be obtained by intersecting S with a concept in C; i.e.,
flc(S) = {S n c I c E C. If IIc(S) = 2 S, then we say that S is shattered by C. The Vapnik-
Chervonenkis (VC) dimension of C is the cardinality of the largest finite set of points S C X that
is shattered by C. If arbitrarily large finite sets are shattered, the VC dimension of C is infinite.

Definition 3.3 For any integer m > 0, IIc(m) = max(fllc(S)I) over all S C X of cardinality m.

Using this notation, the VC dimension of C can be defined as the largest integer d such that
IIc(d) = 2d, or infinity.

Definition 3.4 The length of concept c, denoted Ici, is the number of bits required to write c in
some standard encoding.

Definition 3.5 Let C be defined as above. We say that C is NC-learnable if there exists an NC
algorithm A that takes as input a sample of a concept in C, outputs a hypothesis in C, and has the
property that for all 0< c, 6< 1, and s > 1 there exists a sample size m(c, 6, s), polynomial in 1/c,
1/6, and s, such that for all target concepts c E C with Icl < s, and all probability distributions
P on X, given a random sample of c of size m(c, 6, s) drawn independently according to P, A
produces, with probability at least 1 - 6, a hypothesis h E C that has error at most c such that
P[c E h], where E) denotes the symmetric difference.

Definition 3.6 Let C C X be a concept class. By U(C) we denote the closure of C under finite
unions, i.e.,

U(C)= {cU...Uc. Is> landciEC, 1<i<s}.

Similarly, I(C) denotes the closure of C under finite intersections.

Definition 3.7 Let C be a concept class. An NC hypothesis finder for C is an NC algorithm that,
given a sample of a target concept C, returns a hypothesis in C that is consistent with the sample.
Note that we do not consider randomized hypothesis finders here. The consistency problem for C
is the problem of determining if there is a concept in C that is consistent with a given sample over
X.

The existence of an NC hypothesis finder for C implies that the consistency problem for C is
in NC.

Theorem 3.8 Let C be a concept class with VC dimension d < oo such that there exists an NC
hypothesis finder for C. Then U(C) (resp. I(C)) is NC-learnable.

We will give the proof below. First we handle some preliminaries.

10

Definition 3.9 Let C be a concept class defined on domain X. Let A be an NC algorithm that,
given a sample of a concept in C, produces a consistent hypothesis in C. For every s, m > 1, let
Sc,8,m denote the set of all m-samples of concepts c E C such that Ic! < s. Let CAm C C denote
the A-image of Sc,.,m, i.e., the set of all hypothesis produced by A when A is given as input an
m-sample of a concept c E C with Ic[_< s. We will call CAm the effective hypothesis space of A for
target complexity s and sample size m. We say A is an NC-Occam algorithm for C if there exists
a polynomial p(s) and a constant ce, 0 < a < 1, such that for all s, m > 1 the VC dimension of C A

is at most p(s)m%.

Theorem 3.10 (BEHW) Let C be a concept class with a given concept complexity measure.

1. If there is an NC-Occar,, algorithm for C then C is NC-learnable.

2. Lf t A be an NC-Occan, algorithm for C with effective hypothesis space Cam for target com-
plexity s and sample size m. Then, if the VC dimension of Cam is at most p(s)(log m)' for
some polynomial p(s) >_ 2 and I > 1, then A is an NC learning algorithm for C using sample
size

4 2 21+4p(s) og 2)1+p(s)
me=max lo- .Ilo

Lemma 3.11 (BEHW) Let C C 2X be a concept class of finite VC dimension d > 1. For all
s > 1, let U,(C) = {UI=ci ci E C, 1 < i < s} (resp. Io(C) = {l, 1 c ci E C, 1 < i < s}).
Then for all s > 1, the VC dimension of C8 is less than 2ds log(3s).

Proposition 3.12 (BEHW) If the VC dimension of H is d > 0, then IIH(m) < m d + 1.

We now use Theorem 3.10 to demonstrate the learnability of many concept classes of the form
U(C) and I(C) for C of finite VC dimension.

Lemma 3.13 If C has finite VC dimension d < oo and the consistency problem for C is in NC,
then for any finite set S C X, the sets of Hc(S) can be listed in NC.

Proof Assume S = {xj,...,xm}. To produce a list L of Uc(S), we proceed as follows. If m = 1,
we use the consistency algorithm for C to check if {xj} is consistent, and if so return {0, {xi}},
otherwise return {0}. If m > 1, then we recurse (in parallel) to get L1 = IIc({xj,...,Xm/ 2j})
and L 2 = IIC({Xlm/2j+1,.. ., xm}). Then in parallel for all pairs T1 E L1 , 72 E L 2 , we check the
consistency of T1 U '2, and return {T1 U T 2 I T1 E L1, T'2 E L 2, T1 U T 2 consistent}. The depth of
the recursion is log m; furthermore, since by Proposition 3.12 the size of flc(S) is at most ISid+ 1,
we run the consistency algorithm at most O(m 2d) times in parallel at each level of the recursion.
Therefore, this algorithm is in NC. 0

Proof of Theorem 3.8 We consider only the case U(C), the other case being similar. Let S be
the set of points in an m-sample of a target concept c in U(C). Our strategy will be to find a
hypothesis consistent with S that is formed from the union of relatively few concepts in C; i.e. not
many more than s. This problem can be formulated as a set cover problem. The set to be covered
is the set of positive points of S and the sets allowed in the cover are the elements of ll-(S) that
contain only positive points.

By Lemma 3.13, we can construct Ilc(S) in NC. Then, in parallel, we can easily compute A =
{T E flc(S) I T contains only positive points of S} and P = {x E S I x is a positive example}.
We can then apply the set cover algorithm of Section 2.2 to obtain a cover of size O(s log m). For

11

each set in the cover, we can label the other points negative and run the NC hypothesis finder for
C to produce a hypothesis in C that contains only these points of the sample. Taking the union of
these concepts, we obtain a hypothesis in U(C). Call this algorithm A.

We have shown that A is in NC and that given any m-sample of a concept c in U(C) with Icl _< S,
A produces a consistent hypothesis h for this sample with Ihi < O(s ln m). Hence the effective
hypothesis space U(CAm) of A for target complexity s and sample size m contains only hypotheses
such that Jhi < O(slnm). By Lemma 3.11, the VC dimension of U(CAm) is O(slog(m)(logs +
loglogm)). Hence, A is an NC-Occam algorithm for U(C) and thus by Theorem 3.10, U(C) is
NC-learnable. 0

4 Application to Computational Geometry

Randomization is a tool which has been used extensively to construct algorithms in computational
geometry [ClI, C12, C13, EGS, HW, RSl, RS2]. Recently, Chazelle and Friedman [CF] showed how
to make most of the randomized algorithms used in computational geometry deterministic, albeit
at the cost of a substantial increase in running time. Our results can be used to put many of
these algorithms into deterministic NC, with the number of processors required being equal to the
running time of Chazelle and Friedman's algorithm. We will very briefly outline their technique
and show some of the ideas needed to make the geometric applications parallel.

To remove randomization, Chazelle and Friedman [CF] use balanced set cover. The basic
technique used by Chazelle and Friedman is: First, construct a hypergraph which captures the
behavior of the randomized algorithm. Next, find a balanced set cover for this hypergraph. Finally,
use the set cover found in the algorithm to decide which elements to use as the randomly chosen
subset in the randomized version of the algorithm. For many problems, the first and third steps
are easy to do in NC. The second step is simply Section 2.1 of our paper. In general, the number
of processors required in steps 1 and 3 is easily seen to be less than the number required in step 2,
because of the large size of the hypergraph constructed by Chazelle and Friedman.

All the algorithms discussed in [CF] use a variation of a technique which they call probabilistic
divide-and-conquer. The example they give is: given n hyperplanes in d-space and a parameter
r, find a simplicial cell decomposition of d-space such that each cell intersects O(n(logr)/r) hy-
perplanes. This decomposition, or a similar one, is used in many range search problems [Cli, C12,
C13, EGS, HW]. It is generally used to construct a data structure which consists of a logn depth
tree, with each node of the tree being a simplex, and the children of a node being the simplices
determined by a random sample of the hyperplanes intersecting that node. Since the tree has only
logn depth, if there is an NC algorithm for constructing a level of the tree, i.e., for finding this
simplicial cell decomposition of d-space such that each cell intersects few hyperplanes, then building
the entire tree is in NC.

Once we have an NC balanced set cover algorithm, we still need an NC algorithm for con-
structing the hypergraph which is to be covered. In [CF], a universal triangulation scheme is used
to construct this hypergraph. A triangulation of an arrangement of hyperplanes in d-spaces is a
decomposition of the cells of that arrangement into simplices. By universal it is meant that there
exists a canonical scheme for dividing a cell of an arrangement into simplices which depends only
on that cell, and not on the whole arrangement. The very fact that their triangulation scheme is
universal (which was necessary for their algorithm) means that this triangulation is easy to achieve
in parallel, as it only depends on local information.

One final thing to do is, given a set of hyperplanes in d-dimensionaJ space, construct in NC the
arrangement of cells produced by these hyperplanes. In [CF] this is done by appealing to [EOS],
which is an inherently sequential algorithm. One can construct the arrangement in NC by using an

12

alternative algorithm which has d stages. At the kth stage, we construct the arrangement induced
by the hyperplanes in all the k-flats of the arrangement. We do this by using the arrangements
induced by the hyperplanes in the (k - 1)-flats, which we constructed in the previous stage. For
each k-flat we will construct a graph which will give us the cells of the arrangements in the flat as
connected components of the graph. For each (k-1)-face in a (k-1)-flat contained in the k-flat, we
associate two vertices of the graph. One vertex will correspond to each "side" of the (k - 1)-face.
We then construct the graph by connecting a vertex corresponding to a (k - 1)-face to vertices
corresponding to (k-1)-faces which are in a different (k-1)-flat and which see the neighboring faces
of a cell of the arrangement induced in the k-flat. It is not hard to see that this can be done in NC.
The connected components of this graph will give the k-faces of the arrangements in the k-flats,
and as we know which (k- 1)-faces are sub-faces of a given face, this gives us the arrangement.

5 Acknowledgements

We are grateful to Tom Leighton for helpful discussions. We thank Bob Sloan for exp]Xiuag to us
the fundamentals of learning theory and for giving helpful comments on that material.

References

[ABI] Alon, N., L. Babai, A. Itai, "A Fast and Simple Randomized Parallel Algorithm for the Maximal
Independent Set Problem", Journal of Algorithms, 7, pp. 567-583, 1986.

[ABLP] Awerbuch, B., A. Bar-Noy, N. Linial, D. Peleg, Compact Distributed Data Structures for Adap-
tive Routing , STOC 1989, to appear.

[BEHW] Blumer, A., A. Ehrenfeucht, D. Haussler, M.K. Warmuth, "Learnability and the Vapnik-
Chervonenkis Dimension", U.C. Santa Cruz Technical Report, UCSC-CRL-87-20, Nov. 1987.
Preliminary version appeared in STOC 1986.

[CF] Chazelle, B., J. Friedman, "A Deterministic View of Random Sampling and Its Use in Ge-
ometry", Princeton Computer Science Technical Report, CS-TR-436, Sept. 1988. Preliminary
version appeared in FOCS 1988.

[C] Chvatal, V., "A Greedy Heuristic for the Set-Covering Problem", Mathematics of Operations
Research, vol. 4, no. 3, Aug. 1979, pp. 233-235.

[Cli] Clarkson, K.L., "A Randomized Algorithm for Closest-Point Queries," SIAM J. Comput., vol.
17, 1988, pp. 830-847.

[C12] Clarkson, K.L.,"New Applications of Random Sampling in Computational Geometry," Disc.
Comp. Geom. 2, 1987, pp. 195-222.

[C13] Clarkson, K.L.,"Applications of Random Sampling in Computational Geometry, II," Proc. 4th
Ann. ACM Symposium Comput. Geom., 1988, pp. 1-11.

(EGS] Edelsbrunner, H., L. Guibas, M. Sharir, "The Complexity of Many Faces in Arrangements of
Lines and of Segments," Proc. 4th Ann. ACM Symposium Comput. Geom., 1988, pp. 44-55.

[EOS] Edelsbrunner, H., J. O'Rourke, R. Seidel, "Constructing arrangements of lines and hyperplanes
with applications," SIAM J. Comput., vol. 15, 1986, pp. 341-363.

[HW] Haussler, D., E. Welzi, "Epsilon-Nets and Simplex Range Queries," Disc. Comp. Gcom. 2,
1987, pp. 127-151.

13

[J] Johnson, D.S., "Approximation Algorithms for Combinatorial Problems", J. Comput. System
Sci., vol. 9, 1974, pp. 256-278.

[K] Karp, R.M., "Reducibility among Combinatorial Problems.", In: Complexity of Computer Com-
putations, R.E. Miller and J.W. Thatcher, eds. Plenum Press, New York, 1975.

[KWI Karp, R.M., A. Wigderson, "A Fast Parallel Algorithm for the Maximal Independent Set Prob-
lem", JACM, vol. 32, no. 4, October 1985, pp. 762-773.

[Lo] Lovasz, L., "On the Ratio of Optimal Integral and Fractional Covers", Discrete Math., vol. 13,
1975, pp. 383-390.

[Li] Luby, M., "A Simple Parallel Algorithm for the Maximal Independent Set Problem", SIAM J.
Comput., vol. 15, no. 4, November 1986, pp. 1036-1053.

[L2] Luby, M., Removing Randomness in Parallel Computation Without a Processor Penalty, Proc.
29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 162-173.

[L3] Luby, M., personal communication.

[MNN] Motwani, R., J. Naor, M. Naor, personal communication, March 1989.

[RS1] Reif, J.H., S. Sen, Optimal Randomized and Parallel Algorithms for Computational Geometry,
Proc. 16th Internat. Conf. Parallel Processing, St. Charles, IL, 1987. Full Version, Duke Univ.
Tech. Rept., CS-88-01, 1988.

[RS2] Reif, J.H., S. Sen, Polling: A New Randomized Sampling Technique for Comutational Geometry,
STOC 1989, to appear.

[VL] Vitter, J., J-H. Lin, Learning in Parallel, COLT 1988, pp. 106-124.

14

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies

800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center

China Lake, CA 93555

